1. Конструкции горелок
назадоглавлениевперёд

Горелка - это устройство, предназначенное для получения пламени необходимых тепловой мощности, размеров и формы. Все существующие конструкции газопламенных горелок можно классифицировать следующим образом:
1) по способу подачи горючего газа в смесительную камеру - инжекторные и безынжекторные;
2) по мощности пламени - микромощности (10-60 дм3/ч ацетилена); малой мощности (25-400 дм3/ч ацетилена); средней мощности (50-2800 дм3/ч ацетилена) и большой мощности (2800-7000 дм3/ч ацетилена);
3) по назначению - универсальные (сварка, резка, пайка, наплавка, подогрев); специализированные (только сварка или только подогрев, закалочные и пр.);
4) по числу рабочих пламен - однопламенные и многопламенные;
5) по способу применения - для ручных способов газопламенной обработки; для механизированных процессов.

1. Конструкции горелок

Инжекторные горелки. Кислород через ниппель 1 инжекторной горелки проходит под избыточным давлением 0,1-0,4 МПа (1-4 кгс/см2) и с большой скоростью выходит из центрального канала инжектора 8 (рис. 27). При этом струя кислорода создает разрежение в ацетиленовых каналах рукоятки 3, за счет которого ацетилен подсасывается (инжектируется) в смесительную камеру 10, откуда образовавшаяся горючая смесь направляется в мундшук 13 и на выходе сгорает. Инжекторные горелки нормально работают при избыточном давлении поступающего ацетилена 0,001 МПа (0,01 кгс/см2) и выше.
Повышение давления горючего газа перед горелкой облегчает работу инжектора и улучшает регулировку пламени, хотя при этих условиях приходится прикрывать вентиль горючего газа на горелке, что может привести к возникновению хлопков и обратных ударов пламени. Поэтому при использовании инжекторных горелок рекомендуется поддерживать перед ними давление ацетилена (при работе от баллона) в пределах 0,02-0,05 МПа (0,2-0,5 кгс/см2).
Инжекторные горелки рассчитывают таким образом, чтобы они обеспечивали некоторый запас ацетилена, т. е. при полном открытии ацетиленового вентиля горелки расход ацетилена увеличивался бы по сравнению с паспортным для. инжекторных горелок - не менее чем на 15%; для инжекторных резаков - не менее чем на 10% максимального паспортного расхода ацетилена.
На рис. 28 показаны в качестве примера конструкции инжекторных горелок средней мощности ГС-3 и малой мощности ГС-2 для сварки металлов. Горелки снабжают набором сменных наконечников, различающихся расходом газа и предназначаемых для сварки металлов разной толщины. Номер требуемого наконечника выбирают в соответствии с требуемой тепловой мощностью пламени, выраженной в дм3/ч ацетилена. К рукоятке горелки ГС-3 можно присоединять и другие наконечники, например многопламенные для подогрева, для пайки, вставные резаки для резки металла.

1. Конструкции горелок

Для сварки и наплавки металлов большой толщины, нагрева и других работ, требующих пламени большой мощности, используют инжекторные горелки ГС-4 с наконечниками № 8 и 9:

1. Конструкции горелок

В наконечниках ГС-4 инжектор и смесительная камера установлены непосредственно перед мундштуком. Горючий газ подается в инжектор по трубке, расположенной внутри трубки подачи кислорода. Этим предупреждается нагревание горючего газа и смеси отраженной теплотой пламени, что снижает вероятность обратных ударов пламени и хлопков при использовании пламени большой мощности. Горелка ГС-4 может работать на пропан-бутане, для чего снабжена двумя наконечниками с сетчатыми мундштуками, рассчитанными на расходы: № 8 - пропан-бутана 1,7-2,7, кислорода 6-9,5 м3/ч; № 9 - пропан-бутана 2,7-4,2, кислорода 9,5-14,7 м3/ч.

1. Конструкции горелок


Мундштуки горелок малой мощности или имеющих водяное охлаждение изготовляют из латуни ЛС59-1. В горелках средней мощности мундштуки для лучшего отвода теплоты изготовляют из меди МЗ или хромистой бронзы Бр. Х0,5, к которой не так пристают брызги расплавленного металла. Для получения пламени правильной формы и устойчивого его горения выходной канал не должен иметь заусенцев, вмятин и других дефектов, а внутренняя поверхность канала должна быть чисто обработана. Снаружи мундштук рекомендуется полировать.
Горелки для газов-заменителей отличаются от ацетиленовых тем, что снабжены устройством для дополнительного подогрева и перемешивания газовой смеси до выхода ее из канала мундштука.
Серийно выпускаемые горелки ГЗУ-2-62 и ГЗМ-2-62М для этого имеют подогреватель и подогревательную камеру, расположенные на наконечниках между трубкой подвода горючей смеси и мундштуком (рис. 29). Часть потока смеси (5-10%) выходит через дополнительные сопла подогревателя и сгорает, образуя факелы, подогревающие камеру из коррозионностойкой стали. Температура смеси на выходе из мундштука повышается на 300-350°С и соответственно возрастает скорость сгорания и температура основного сварочного пламени. Горелки могут работать на пропан-бутан-кислородной и метан-кислородной смеси; ими можно сваривать стали толщиной до 5 мм (в отдельных случаях до 12 мм) с удовлетворительными показателями по производительности и качеству сварки.
Наконечники этих горелок рассчитаны на следующие расходы газов:

1. Конструкции горелок

При переводе на пропан-бутан горелок, рассчитанных для работы на ацетилене, следует брать наконечник, на два номера больший, и ввертывать в него мундштук, на один номер больший, а инжектор - на один номер меньший, чем при сварке металла той же толщины на ацетилено-кислородной смеси.
Специальные наконечники. Для сварки в тяжелых условиях нагрева, например крупных чугунных отливок с подогревом, применяют специальные теплоустойчивые наконечники НАТ-5-6 и НАТ-5-7. В этих наконечниках мундштук и трубка снабжены теплоизоляционной прослойкой из асбеста, разведенного на воде или жидком стекле, и покрыты сверху кожухом из стали Х25Т. Они могут длительно работать без хлопков и обратных ударов. Для этих работ используют также обычные наконечники, снабженные дополнительной трубкой для подвода охлаждающего воздуха.
Безынжекторные горелки. В отличие от инжекторных в данных горелках сохраняется постоянный состав смеси в течение всего времени работы горелки, независимо от ее нагрева отраженной теплотой пламени. В инжекторных же горелках нагрев мундштука и смесительной камеры ухудшает инжектирующее действие струи кислорода, вследствие чего поступление ацетилена уменьшается и смесь обогащается кислородом. Это приводит к хлопкам и обратным ударам пламени, - приходится прерывать сварку и охлаждать наконечник.
Безынжекторные горелки, в которых ацетилен и кислород поступают в смесительное устройство под равными давлениями, при нагревании не меняют состава смеси, поскольку при нагревании мундштука если и уменьшается поступление газов в горелку, то оно одинаково как для кислорода, так и для ацетилена. Следовательно, относительное содержание их в смеси, т. е. состав смеси, остается постоянным. На рис. 30, а показана схема безынжекторной горелки, на рис. 30, б - схема устройства для питания безынжекторной горелки ГАР (равного давления) кислородом и ацетиленом через постовой беспружинный регулятор ДКР (см. рис. 23).
Горелка ГАР комплектуется семью наконечниками на расходы ацетилена 50-2800 дм3/ч. Каждый наконечник имеет смесительную камеру с двумя калиброванными отверстиями: центральным для
кислорода и боковым для ацетилена.

1. Конструкции горелок

Камерно-вихревые горелки. Для некоторых процессов газопламенной обработки - нагрева, пайки, сварки пластмасс и т. п. не требуется высокой температуры ацетилено-кислородного пламени. Для этих процессов можно использовать камерно-вихревые горелки, работающие на пропано-воздушной смеси. В этих горелках вместо мундштука имеется камера сгорания, в которую поступают пропан и воздух под давлением 0,05-0,2 МПа (0,5—2 кгс/см2). Пропан подается в камеру через центральный канал, а воздух, вызывающий также вихреобразованне, поступает по многозаходной спирали, обеспечивающей «закрутку» газовой смеси в камере сгорания. Продукты сгорания выходят через концевое сопло камеры сгорания с большой скоростью, образуя пламя достаточно высокой температуры (1500-1600°С). Горелки позволяют получать пламя с температурой 350-1700°С.
Горелки специальные. К таким горелкам относятся, например, многопламенные для очистки металла от ржавчины и краски; газовоздушные для пайки и нагрева, работающие на ацетилене и газах-заменителях; керосино-кислородные для распыленного жидкого горючего; многопламенные кольцевые для газопрессовой сварки; для поверхностной закалки; для пламенной наплавки; для сварки термопластов и многие другие.
Принципы устройства и конструкции их во многом аналогичны используемым для сварочных горелок. Отличие состоит в основном в тепловой мощности и размерах пламени или суммы пламен (при многопламенных горелках), а также размерах и форме мундштука.

назадоглавлениевперёд



Уважаемый посетитель, Вы прочитали статью "1. Конструкции горелок", которая опубликована в категории "Оборудование и технология". Если Вам понравилась или пригодилась эта статья, поделитесь ею, пожалуйста, со своими друзьями и знакомыми.


1 мая 2016 | Просмотров: 13306 |
Для того, чтобы оставить свой комментарий, войдите на сайт или зарегистрируйтесь.
Партнёры
Спонсор сайта: Тиберис – лучший интернет-магазин сварочного оборудования Подробнее »
Статистика
Каталог@Mail.ru - каталог ресурсов интернет Рейтинг@Mail.ru Рейтинг Сварка: сварочное оборудование сварочные электроды сварочная проволока ферросплавы
Учимся профессии Сварщик » Оборудование и технология » 1. Конструкции горелок
oSvarke.Info - информационный сайт для мастеров п/о и преподавателей спецдисциплин профессии "Сварщик"
Логин
Пароль